
BATCH REKEYING IN MYKIL KEY MANAGEMENT SYSTEM
Wesley Willett, Jyh-How Huang and Shivakant Mishra

Department of Computer Science
University of Colorado, Campus Box 0430

Boulder, CO 80309-0430, USA.

ABSTRACT
This paper describes support for batch rekeying in Mykil, a
key management system for supporting secure group mul-
ticast. Batch rekeying in Mykil allows for substantial re-
ductions in the cost and complexity of rekeying operations,
arguably the expensive portion of the system. By accumu-
lating join and leave operations and utilizing an algorith-
mic approach to minimize the number of necessary rekey-
ing messages, Mykil can achieve a marked reduction in the
total number and size of messages and can significantly
streamline the system’s operation.

KEY WORDS
Key management, Performance, Batching.

1 Introduction

Today’s increasingly complex, pervasive, and media-rich
Internet applications frequently rely on secure group multi-
cast to provide an efficient and protected data transmission
to large number of users. Several secure multicast systems
for large groups on top of IP multicast have been proposed
[8, 6, 7, 9, 1, 2, 11, 4]. A key management server manages a
set of cryptographic keys used for encrypting and decrypt-
ing the multicast data. The process of updating the cryp-
tographic keys, and distributing them to the group mem-
bers is called a rekeying operation. Rekeying is required
in secure multicast to ensure that only the current group
members can send encrypted multicast data, and decrypt
the received multicast data.

Batching has been proposed [2, 10, 5, 8] to reduce the
frequency of rekeying operations. The main idea of batch-
ing is to perform a rekeying operation only after a minimum
number of member join/leave requests have been received
or after a certain time interval has elapsed. This paper de-
scribes support for batching in the Mykil key management
system [4, 3]. The paper presents a new algorithm for batch
rekeying, incorporates it in Mykil, and demonstrates sub-
stantial reductions in cost and complexity of rekeying op-
erations.

2 Overview of Mykil

The Mykil protocol for key management combines the best
features of group-based and key-based key management
hierarchies, while mitigating their weaknesses. Specifi-

cally, Mykil implements a group structure similar to that of
Iolus[6], while using a key structure based on LKH [9] to
control the distribution of keys inside each area in the group
structure. A multicast group is divided into several areas,
each of which is managed by an area controller (AC). Each
AC is a member of both its area and another parent area
from which it forwards multicast data.

An AC manages keys using a tree structure where
each node in the tree corresponds to an auxiliary key. Each
client in the AC’s area is represented by a leaf node. At
join, each client receives all of the keys from nodes on the
path between its leaf and the root of the tree. If that mem-
ber then leaves the group, only the keys it possessed must
be updated. To do this, the AC simply creates new ran-
dom keys along the path to the leaving client and multi-
casts them to the group, encrypting each key by its chil-
dren before they are sent. Mykil implements this system
using a binary tree of fixed depth. This means that rather
than transmit n unicast messages (where n is the number of
clients in the area), the AC only needs to transmit a single
multicast message consisting of O(logn) keys.

3 Batch Rekeying

Even though the rekeying algorithm of Mykil is consider-
ably more efficient than any naive approach, e.g. a key star
approach, it still requires a large volume of message traffic
between an area controller and the area clients, particularly
if there are frequent membership changes. Imagine, for in-
stance, an area with a capacity of 4096 members, in which
one quarter (1024) of the members either join or leave the
group within a one-minute interval. Such a scenario is pos-
sible at the end/beginning of a pay-per-view program. Us-
ing a key star approach, 1024 joins would require 1024 sep-
arate multicast updates of the group key, each encrypted
with the old group key and signed for a total of 2048 en-
cryptions. On the other hand, 1024 leave events would re-
quire 1024 rekey events each of which would unicast a key
update to every remaining member of the group for a total
of more than three million updates, each of which would
have to be encrypted and signed by the server, for a total of
more than seven million encryptions. An auxiliary key tree
hierarchy that is used with in each area in Mykil would re-
quire a similar number of join updates, but significantly re-
duces the number of leave updates. It requires 1024 signed
multicast messages to handle 1024 leave events, each con-



taining a set of 12 keys (tree depth − 1) encrypted by
the keys from their children nodes. This results in a much
lower number of encryptions, only 25,600.

Fortunately, we can reduce this number even more by
realizing that most of the messages in both of these ex-
amples are redundant. In the joins, for example, the same
group key is being replaced 1024 different times over the
course of a minute, an unnecessary overhead in most multi-
cast applications. Also, since the clients leaving the group
inevitably share a significant number of auxiliary keys,
many of these keys are being updated hundreds of times
in the course of a minute. By combining, or batching, mul-
tiple rekey events into a single event we can eliminate this
redundancy and greatly improve rekeying performance.

The main idea of batching is to perform a rekeying op-
eration only after a minimum number of member join/leave
requests have been received, and/or a certain time interval
has elapsed. In a batched system, the 1024 join events in
the example above could effectively be replaced by a sin-
gle multicast of the group key update at the end of the one
minute interval. This single group key could be encrypted
and signed for a total of only 3 encryptions. Leave events
could also be combined, eliminating the need to encrypt
and transmit redundant keys, providing significant reduc-
tion. Also, since a single multicast message, rather than
1024, would need to be signed and transmitted, an imme-
diate savings is achieved there as well.

These numbers are somewhat incomplete in that they
do not take into account the actual size of the individual
messages, which will be larger in batched rekeying than
in the non-batched rekeying implementations. However,
since encryptions are the most compute-intensive part of
rekeying, they do provide a compelling case for batching
rekey events. We will show later that batching also provides
meaningful improvements in total message size.

3.1 Batching of Join Events

While the batching of join events is of interest, and is im-
plemented in Mykil, it is a fairly simple process, and we
will not describe it in as much great detail as the batching of
leave events. Essentially, the process of batching joins en-
tails simply waiting for multiple join events to occur before
transmitting an updated group key to the clients already in
the area. Batching of join events occurs in conjunction with
the batching of leave events and uses the same mechanism,
but requires only the group key to be transmitted. In fact,
because joins update only the group key and leave events
also update the group key, once any join or leave event oc-
curs, no additional processing needs to be done to add ad-
ditional joins to the batch.

The unfortunate consequence of batching join events
is that it delays the ability of a joining member to access
group multicast data until a batched rekey event occurs.
However, in many cases, doing so can result in a signifi-
cant savings in terms of reduced number of messages ex-
changed. While each non-batched join only necessitates

the distribution of a single group key, rather than an entire
string of keys as in a non-batched leave event, each indi-
vidual message must still be signed by the area controller
in order to insure its validity, significantly increasing the
processing time and total bytes transmitted.

3.2 Batching of Leave Events

Mykil batches leave events by algorithmically combining
the keysets of multiple leave events. This batching func-
tionality is broken into three distinct steps, two of which
take place at the area controller, and a third is performed
by the client. First, rather than generating and distribut-
ing new keys when a member leaves the group, the AC
must instead track all deleted keys and combine redundant
paths. At some later point, generally at a specified time in-
terval or before a multicast event, the second step occurs.
At this point all of the nodes on the accumulated leave paths
must be encrypted and multicast to clients in the area. Area
clients must then update the appropriate keys in their key-
sets in order to decrypt new multicast data.

3.3 The Update Tree

In order to provide this functionality, Mykil builds a second
tree known as the update tree. This tree mirrors the original
key hierarchy tree in that it is a binary tree with every node
in the tree representing a key in the hierarchy and every leaf
representing a client. However, in order to conserve space,
the update tree is created as an unbalanced tree containing
spaces only for those nodes that have been added to it. Be-
fore any client leave events have occurred, or after a batch
leave event, this tree is empty. When a client leaves the
area, either voluntarily or because of a subscription expira-
tion or connection loss, the initial delete process removes
the client from the AC’s list of clients. The path in the key
tree corresponding to the client’s id is then parsed and new
keys are generated. These keys are then added to the up-
date tree along a path identical to the one in the key tree.
This is made convenient by the fact that, like in the key tree,
the path to a client’s leaf node corresponds directly to the
last d bits(where d is the depth of the fixed tree) of the bi-
nary interpretation of the client’s id. In a tree of fixed depth
4, like the one given in Figure 1, a client with id 1 (001)
would have a tree path of left-left-right, while a client with
id 3 (011) would have a tree path left-right-right. Addi-
tional deletes follow in a similar fashion, however, because
the paths of the deleted nodes will inevitably overlap one
another, the construction of the update tree will become
progressively easier. In the aforementioned tree of depth
4, for example, deleting node 1 immediately after deleting
node 0 would result in the addition of only one new node
to the update tree since both of node 1’s (and hence node
0’s) parents would already be in the update tree. The up-
date tree corresponding to the deletion of nodes 0, 1, and 3
is shown in Figure 2.



Figure 1. Client Ids.

Figure 2. Update Tree after deletion of 0, 1, and 3.

3.4 Encryption Methodology

Eventually, either after a predetermined interval of time,
aggregation of a predetermined number of individual leave
events, or before a multicast event, the actual batch leave
message is sent. A time interval, or rekey interval, may
be desirable, for example, in a subscription-based system
where expired clients need to be regularly removed to pre-
vent them from receiving service for longer than they paid
for. Regular processing of batches may also be desired in
order to help preserve key freshness, particularly freshness
of the group key used to encrypt multicast data. Main-
taining fresh keys can help prevent against both replay at-
tacks and computational attacks, although Mykil already
provides significant mechanisms to protect against them.
Also, processing at regular intervals allows more flexibility
in processing expiring members in groups that use time-
based subscriptions, since members’ expiration times can
be checked against the next rekey interval in advance and
the update tree can be built in background in the time be-
tween rekey events rather than at moment of expiration.
Processing after the receipt of a fixed number of leave
events (the rekey threshold) may be desirable in order to
maintain enough free space in the key tree for joining mem-
bers. Remember that even while leaving members have
been processed and added to the update tree, they will not
be removed from the group until the batch leave message
is sent. Generally, as we will see later, the amalgamation
of more leave events results in a greater overall bandwidth
savings, but requires a larger single message, more process-
ing time and thus a greater delay at both the area controller
and the client when the leave is processed.

In some scenarios it may be desirable to process a

batch leave only before or after certain multicast events in
the system. In a pay-per-view video system, for example,
members generally pay for the entire film, and it may be
desirable to only process leave events after the multicast of
the current video session is completed, or before the start
of a new one. A multicast event could also be something
much less significant, even some thing as frequent as the re-
ceipt of a multicast data packet by the area controller. This
could be desirable in systems where join and leave events
occur rapidly but data transmission does not occur in signif-
icant amounts or at regular intervals. Batching will result in
decreased bandwidth usage and fewer messages in nearly
all cases, since even a batched message containing only a
single leave event will be only slightly larger than a leave
event in a non-batched system. This slight increase is due
to the fact that a batched message must contain additional
information about the tree structure, while a non-batched
message only needs to contain a list of keys.

To ensure that only update messages originating at the
real area controller are accepted by clients, the rekey mes-
sage should be signed using the AC’s private key. This step
is fairly expensive, but the use of batching helps to mitigate
it by dramatically reducing the number of messages that
must be signed and verified.

Once a batch leave event is triggered, the entire up-
date tree, containing new keys which replace all of those
possessed by the deleted clients, is processed and multicast
as a single message to the entire area. As in a standard,
non-batched leave, all new keys are included, encrypted by
the keys of each respective node’s children. This prevents
the deleted clients from decrypting any of the new keys,
while allowing all other clients to decrypt keys on their
path. Once the leave event occurs, the AC begins multi-
casting data using the updated group key, excluding those
clients who have been removed.

3.5 Processing of Batch Message

Once a client receives a batched leave message, it can
find its appropriate keys by simply parsing the update tree,
which was transmitted in its entirety, along the path corre-
sponding to its client id. This path can potentially be very
short and require very few updates if the client is isolated
from the deleted members, or may be nearly as long as the
tree depth if one of the client’s neighbors was removed.

3.6 Compromises

In general, batch leaving should provide a significant de-
crease both in the number and overall size of rekeying mes-
sages. In order to do this, it is important to note that we
make a few compromises. For example, while batching re-
duces the overall rekey frequency and total size of the rekey
messages, individual rekeying messages are significantly
larger. Another consequence of batching leave events is
that clients do not immediately relinquish access once they



are deleted, and can continue to receive multicast informa-
tion up until the moment the batch leave is sent. [5] refers
to this period of time as the vulnerability window. While
in many multicast applications this may not be an issue,
it may be a security concern in others. In systems where
this is the case, the length of the rekeying interval can be
reduced in order to strike an appropriate balance between
rekeying efficiency and the security of the multicast data.

4 Implementation and Performance

We have developed a prototype of the Mykil multicast sys-
tem which implements batch leaving on a network of Linux
workstations. We performed our analysis using a fixed tree
of depth 10 and a corresponding group size of 512. Peri-
odic batch rekey events occur at set intervals.

4.1 Storage Requirements

Batch rekeying has little impact on the long term storage
requirements of Mykil clients. As in previous versions of
the Mykil protocol, clients need to store public keys for the
area controller registration server and for other ACs in the
group, its own public/private key set, and 12 auxiliary sym-
metric keys (assuming areas are capped at 4096 members),
for a total of roughly 5KB.

However, since the batching of rekey events results in
larger message sizes, clients’ memory requirements are in-
creased. While they do not need to store the contents of
these update messages, clients must have enough available
memory to load the entire update tree and parse it to find
the appropriate keys. In the most expensive case, a batched
leave could encompass the removal of every possible group
member and could therefore be as large or larger than the
key tree maintained by the area controller. Moreover, once
transmitted, the update tree must contain two versions of
each transmitted node, one encrypted by each of its chil-
dren. For a group of 4096 members, this could mean an
additional space requirement of almost 254KB. Because
this requirement could prove prohibitive on devices like
PDAs, rekey events would most likely be triggered at af-
ter a smaller number of leave events on such a system. If,
for example, rekey events are mandated after 1024 leave
events, the size(worst case) of the transmitted update tree
drops to only about 100KB and even smaller rekey thresh-
olds can be used to decrease this size further.

Storage requirements for area controllers are in-
creased by a similar amount since the area controller must
constantly maintain the update tree. As a result, the area
controller likely needs an additional 50-127KB of mem-
ory (depending on the rekey threshold) in addition to the
roughly 133KB required to maintain the key tree and to
store public keys for the rs and other area controllers. How-
ever, area controllers are expected to be machines with sig-
nificant resources, and this additional space requirement is
fairly trivial.

4.2 CPU Requirements

The addition of batching to the Mykil protocol dramati-
cally decreases the number of encryptions required by the
area controller in rekey events, significantly reducing the
amount of processor use. However, this is somewhat bal-
anced by the additional operations necessary to maintain
and transmit the update tree.

Clients are required to do significantly more process-
ing before as they must now decode and parse the update
tree at each rekey event, rather than examining a single key
set. However, because rekey operations occur with less fre-
quency in the batched system, the client benefits from only
having to perform rekey processing at intervals.

4.3 Bandwidth Requirements

Figure 3. Number of bytes transmitted (No signatures).

Figure 4. Number of bytes transmitted (with signatures).

Similarly, while bandwidth requirements overall will
tend to decrease in the batched system, individual rekey



messages will be larger. This means that rather than trans-
mitting a single key set (roughly 1.5KB in size) at every
rekey event, the system will transmit a smaller number of
larger rekey messages (ranging anywhere from 2-150KB
depending on the number of leaves occurring and the leave
threshold chosen). The batched system actually saves a sig-
nificant amount of total bandwidth here because the area
controller only needs to sign a relatively small number of
messages using its public key. Figures 3 and 4 demonstrate
this savings as seen in a small Mykil test area with a max-
imum of 128 members, with symmetric keys 32 bits long.
In 3, where signature costs are not considered, the mes-
sage size of small batch leaves begins to approach, and can
even overtake that of the non-batched system. This is due
to the fact that the update tree must contain slightly more
information than a key set in order to represent the same
keys, namely directional data which is required to store the
unbalanced tree. It is important to note that, because of
this, very small batches of leave events will always be more
costly than their non-batched counterparts, even when the
cost of signatures is included. Once the cost of message
signing is factored in, however, the bandwidth savings of
the batched case begins to ramp up dramatically, as seen in
4.

Figure 5. Number of encryptions.

This presents an interesting dilemma since, as 4
shows, the total bandwidth savings increases as greater
numbers of leave events are accumulated. This bandwidth
savings comes at the cost of increased memory and pro-
cessor requirements as well as the potential for bottlenecks
given the increasing size of individual messages. Addition-
ally, longer rekey intervals increase the size of the vulner-
ability window. All of these factors must be taken into ac-
count in order to select a proper rekey interval and/or rekey
threshold in a given implementation.

4.4 Batch Performance

Figure 6. Number of encryptions.

When compared against the performance of a non-
batched version of Mykil or a key star hierarchy, the
batched Mykil system soundly outperforms the other two
in terms of encryptions and the total number of messages
transmitted in almost all circumstances. We continue to
use the number of encryptions as a comparison scale. In
this section, all comparisons are based on a worst-case sce-
nario for batching. We assume that clients are distributed
in the tree such that a batch operation produces the largest
possible update tree for that number of clients. For exam-
ple, in a group of 1024 clients a worst case group would
include the clients 0, 1023, 511, 512, 255, 256, 767, 768
. . . etc. where each successive node added is the most
isolated node remaining in the key tree. In practice we
have found that the worst case scenario provides a close ap-
proximation of the average case in areas with very low or
very high populations, but that the average case improves
in moderately populated scenarios. The best case, in which
all client nodes are located consecutively in the tree, offers
even more substantial gains in moderately populated trees,
but also begins to asymptotically approach the worst case
as client numbers near the extremes of the area capacity.
Mykil is designed to reuse vacated client positions in order
to maintain a more concise tree, however, in this scenario
we use a worst case analysis, since statistically such a dis-
tribution could conceivably occur.

As mentioned previously, Mykil generally exhibits
significant performance gains when compared to key star
implementations. As seen in Figures 5 and 6, there exist
some peripheral cases, including either very small groups
or situations in which nearly the entire group departs at
once, where key star provides superior numbers. In large



groups with frequent membership changes, like the ones
we are dealing with, these cases are unlikely to occur with
any sort of regularity. Comparisons against non-batched
variations (Figure 7) of Mykil also show large improve-
ments, especially when large numbers of joins and leaves
take place during the interval.

Figure 7. Comparison with non-batched version.

For reference, we also provide data (Figure 8) for a
Mykil area batching only leave) events. Such a system may
still be desirable in situations where new clients need to im-
mediately begin accessing data. Because leave events are
much more complex operations than join events, a leave-
only system still produces far better results than one with
no batching. But because each join now results in a new,
signed message, there is a noticeable increase in encryp-
tions over implementations that batch both joins and leaves.

5 Conclusion

This paper addressed the basis for and implementation
of batch rekeying in the Mykil key distribution protocol.
Through a prototype implementation, we quantified the
performance gains provided by the batching of rekey events
and compared them with the performance of existing hier-
archies such as key star, as well as non-batched versions
of the Mykil. Future work includes using our Mykil pro-
totype to build a large-scale system for disseminating real
multicast data. Such a system should take advantage both
of Mykil’s support for mobility and fault tolerance and its
efficient key distribution structure.

Figure 8. Comparison with non-batched version.

References

[1] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor,
and B. Pinkas. Multicast security: A taxonomy and
some efficient constructions. In INFOCOMM’99.

[2] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and
D. Daha. Key management for secure Internet multi-
cast using boolean function minimization technique.
In SIGCOMM’99.

[3] J.-H. Huang and S. Mishra. Mykil: A Highly Scal-
able and Efficient Key Distribution Protocol for Large
Group Multicast. In GlobeCom 2003.

[4] J.-H. Huang and S. Mishra. Support for Mobility and
Fault Tolerance in Mykil. In DSN 2004.

[5] X. Li, Y. Yang, M. Gouda, and S. Lam. Batch rekey-
ing for secure group communications. In WWW’01.

[6] S. Mittra. Iolus: A framework for scalable secure
multicasting. In SIGCOMM’97.

[7] R. Molva and A. Pannetrat. Scalable multicast secu-
rity in dynamic groups. In CCS’99.

[8] S. Setia, S. Koussih, and S. Jajodia. Kronos: A scal-
able group re-keying approach for secure multicast.
In IEEE Sym. on Res. in Sec. and Pri., 2000.

[9] C. Wong, M. Gouda, and S. Lam. Secure group com-
munication using key graphs. In SIGCOMM’98.

[10] R. Yang, S. Li, B. Zhang, and S. Lam. Reliable group
rekeying: A performance analysis. In SIGCOMM’01.

[11] S. Zhu, S. Setia, and S. Jajodia. Performance op-
timizations for group key management schemes. In
ICDCS’03.


